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Summary — The aerodynamic heating accompanying supersonic and hypersonic

Hight renders design for infinite lifetime impossible. At moderately high tempera-

tures creep sets in and causes rupture in tension and buckling in compression,

even under relatively small loads if they act for a sufficiently long time. At

extremely high temperatures the structural material, or its protective covering,
melts, vaporizes, sublimes, or burns. The analyst must be able to calculate the

lifetime of the structural elements in order to ensure the safety of the structure.

A few simple methods of analysis are presented in the report with the aid of

which approximate calculations of the lifetime can be carried out.

NOTATION

a constant; non-dimensional deflection amplitude; thermal diffusivity
thickness of wall

A area
constant in Ramberg-Osgood relationship
specific heat
average specific heat at constant pressure of gas mixture
constant; aerodynamic coefficient

D12 coefficient of mass diffusion of species 1into species 2
modulus
function
function
depth of idealized column section; external heat transfer co-
efficient
heating rate
integral; moment of inertia
constant
constant; thermal conductivity
length of bar or column; latent heat of melting

Le Lewis-Semenovnumber defined in equation (114)
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ni exponent of time in creep law; Landau's parameter defined in
equation (107);mass transfer rate

11 bending moment
exponent of stress in creep law; integer
integer; exponent in Ramberg-Osgood relationship; pressure
load
1-1- E

constant in exponential creep law; distance of ablating surface from
origin of co-ordinates
timc
temperature
velocity component in x-direction
velocity component in y-direction
velocity of ablation
weight

x variable ; co-ordinate
variable ; co-ordinate
constant in Andrade's law
thickness of laver of molten material
increment
strain; emissivity
curvature; constant in Andrade's law
constant in creep law
coefficient of viscosity
radius of gyration of section ; density
stress; I3oltzmann'sradiation constant
shear stress
heat flux
The following symbols, when used as subscripts, indicate or refer

to:

er critical
I) drag
eff effective

Euler
interface
melting
natural
tangent

ii ultimate
0 initial or nominal value
00 initial value before elastic deformations
1 concave flange
2 convex flange
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I. INTRODUCTION

BEFORE World War II the duty of the designer was to provide the air-
plane with a structure which would not fail under the loads expected in
flight or at landing. Only comparatively recently was he given permission
to hedge by stipulating a maximum number of hours of flying for which his
guarantee would be valid; this change occurred when very thin-walled
metal structures and ultra-high-strength aluminum alloys combined to
bring about fatal failures due to fatigue.

The trend away from the concept of safety  ad inlinitum is now accel-
erating because the high temperatures accompanying supersonic and
hypersonic flight make it impossible to build structures for anything but a
finite lifetime. At the same time most missiles are required to make only
a single flight and that even of rather short duration. To provide such
a missile with a structure that would outlive the mission by a large factor,
would be obviously a waste of weight, and thus also of fuel and money.

The purpose of this report is to discuss some of the factors that have re-
cently attained importance in restricting the lifetime of airplane, missile,
and spacecraft structures. No further mention will be made of fatigue as
that topic has been amply treated in the literature of "cold" structures.

The first effect typical of "hot" structures that affects lifetime is the
phenomenon of creep. It is well known that a metal test specimen sub-
jected to a constant tensile load continues to increase in length with time
if the temperature is high enough. Eventually the specimen fractures
without any increase in load. The time at which fracture takes place, the
critical time, is obviously of concern to the structural designer. The
situation is similar with a column subjected to a compressive load which
may be perfectly capable of supporting the load when it is applied but
nevertheless it will buckle after a certain length of time, again referred
to as the critical time.

These phenomena, described here and first explored in connection with
bars, occur also with beams, frames, plates and shells. All these structural
elements fracture, bulge, and collapse in the presence of creep when
the loads are acting on them for a sufficiently long time.

The rate of attrition becomes even larger in bodies re-entering the
atmosphere from outer space. Witness to the destructive power of the
high-heating rates thus encountered arc the meteors which melt, burn
and evaporate in the air. The airplane designer must learn how to control
these phenomena if he is to succeed in bringing back to the surface of
the earth vehicles, and eventually vehicles containing human beings.

2. CREEP RUPTURE OF TENSILE BARS

A. Basic Concepts and Theoretical Derivation

Probably the most obvious limit of the useful life o f a structural element
operating at a high temperature is the time at which a bar, subjected to
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tension, fractures in consequence of creep. The phenomenon was ob-
served in 1910 by Andradem who also gave a physical explanation of

tertiary creep and fracture. Ile pointed out that the elongation of the
bar from its original length L„ to a length L at time t must be accompanied
by a decrease in the cross-sectional area as creep takes place without a
substantial change in volume. I f the engineering strain is E at time t,

the length L is
L L0(1 H-

and the new cross - sectional area A must be

24 2101(1-F (2)

if A„ was the original cross-sectional area. It follows from equations (1)
and (2) that the volume remains constant in this process:

LA = L„A, (3)
But a decrease in the value of the cross-sectional area results in an

increase in the tensile stress if the load P is constant. At the beginning
of the test the stress is

"5 P/A0 (4)

while at t a _ P/A a„(1 1 E) (5)
The increase in stress causes an increase in the strain rate which

becomes noticeable when the engineering strain E is a few per cent. The in-
creasing strain rate indicates the beginning of the third phase of the
creep process which generally leads to failure after a comparatively short
time, namely as soon as the increasing stress in the decreasing cross-
section reaches the value of the ultimate stress of the material at the test

temperature.
Andrade proved his conjecture by employing a shaped weight partially

submerged in water. The shape was devised in such a manner that the
increase in buoyancy with increasing elongation exactly compensated for
the decrease in cross-sectional area, and thus the stress remained constant
during the entire test. In consequence the strain rate did not change and
the secondary phase of creep extended up to fracture.

Andrade published an empirical formula derived from his experiments :

L L0(1 + i/3)e1 t (6)

where L is the length of the bar at time t, L, the same quantity at tI e

beginning of the test (t =  0), t is time, and ß and K are constants for a
constant stress and a constant temperature. When t is large, this relation-
ship reduces to

(1 /L) (dL/dt) z K = constant (7)
which can easily be stated in the words that the time ratc of change of the
natural strain is constant. When the strain does not exceed a few per cent,

this is equivalent to the generally accepted secondary creep law according
to which the time rate of change of the (engineering) strain is constant
(provided the stress and the temperature remain constant).

In most practical applications the load acting on the element is constant

A.S. (VOL. 2)- 24
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rather than the stress. In such a case the calculation of the time
necessary for rupture to take place is not difficult ; the fundamental
considerations needed for it were presented by the author in Ref. 2.
The secondary creep law can be given in the form

de/dt = =  f(a)  (8)

where  f(a)  indicates an empirical function of the stress at a constant
temperature. But in the constant load test the stress increases with time
as E in equation (5) increases with time. Hence a must be replaced by
0-0(1 E) in equation (8). Similarly, the large deformations preceding
rupture necessitate the substitution of the natural strain

En r log (1 +- E) (9)
where log is the natural logarithm, in place of the engineering strain E.

Thus equation (8) becomes

	

(d/dt)[log (1 + E)] = f[a0(1 E)] (10)

The justification of this creep law lies in its logic as well as in its agree-
ment with Andrade's observations (").

From equation (10) a simple graphical procedure can be developed f)r
the determination of the critical time under a constant load. If, for the
sake of simplicity, the notation

R — (1 E) (11)
is introduced, in the differential equation

	

(d/dt)(log R) = f(a-„R) (12)
the variables can be separated :

d(log R)
dt (13)

At the beginning of the test E 0 and thus R = 1; at the end of the test

Rcr - 1 Ecr au!ao (14)

Hence the critical time is

d(log R)
cr (15)

Au0R)

Because of the non-linearity of the creep law the deformations begin
slowly, but they proceed very rapidly as soon as they become noticeable.
For this reason equation (15) can often be replaced by

' d(log R)

; ./(a0R)

without a significant loss in accuracy. Since

d(log a) = da/a =  d(a0R)/Er0R  = d(log  R)

equation (16) can be written in the form
CO CO

d(log 0") d(log cy)
ter It f f( ) -
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log  o-c,  'log o-„ log Cr

FIG. 1. Graphic determination of creep rupture time.

In Fig. 1 the reciprocal of the experimental steady creep rate is plotted
against the logarithm of the stress at which it was measured. The area
under this curve, taken between the ordinates log croand log au where
au is the ultimate stress of the material at the test temperature, is the
critical time. Often it does not differ significantly from the area under the
curve between log croand infinity.

B. Comparison with Experiment

In Figs. 2 to 5 the results of graphic-numerical integrations are com-
pared with experiment. The solid lines represent the experimental
information on steady creep rate and creep rupture time while the dashed
line is the critical time calculated bv a numerical-graphic integration in
accordance with equation (18). Theory and experiment are in satisfactory
agreement in the case of pure aluminum (Figs. 2 and 3) but the difference
between them is significant in the case of 75S-T6 aluminum alloy
(Figs. 4 and 5).
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FIG. 2. Steady creep rate and rupture time.
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FIG. 3. Steady creep rate and rupture time.
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FIG. 4. Steady creep rate and rupture time.
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Of course, the metallographic structure of the 75S-T6 material changes
when the specimen is exposed to high temperatures. One indication of
this change is the decrease of static tensile strength with time of ex-
posure. According to Ref. 5, the ultimate stress after 101 hours of exposure
may be as low as one-third of the value observed after 1- hr of exposure.

To improve the agreement, a trial-and-error process was devised in
which the ultimate stress was assumed first and the integration extended
from ao to a„ to obtain the critical time; subsequently a modified value
of au was assumed to agree with the experimental value corresponding
to ter. When this procedure was continued until a consistent set of values
was obtained, the results were in considerably better agreement with
experiment than the original critical times. The improved theoretical
values are shown by the dash-dotted lines. These lines still differ from
the experimental curves but the effect of prolonged heating on the creep
properties of the material could not be taken into account in a satisfactory
manner because of lack of information.

The first two figures contain data from a paper by Sherby and Dorn")
while the experimental curves of the last two figures were taken from the
ANC-5 bulletin(3).

C. Application to Various Creep Laws

1. Power law. When the creep law is
—  f(a) (a/A)" (19)

substitution of a aoR gives

	

f(a) f(a„R) (a„RI A)"  (20)

and equation (16) can be written in the form

dR  dR
ter = . 


Rj(a,R) (a,/ A)n

Integration and substitution of the limits yield
1

	

ter
n ( ro A)

---1'(1 j„)  (22)
"

where is the nominal strain rate, that is the strain rate obtainable
from equation (19) upon substitution of the nominal stress a, — P/A0.
This very simple formula was derived in Ref. 2.

In some cases it may be necessary to distinguish between the correct
upper limit of R, namely aula„, and infinity. With the correct upper
limit the critical time becomes

1
nE0




1
n

[ II
LE,Ell

(23)

(21)

where is the creep rate obtainable from equation (19) upon substitution
of au for a.
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It follows from equation (22) that

tcro =1/n (24)

Even though equation (24) was proved in Ref. 2 in 1953, there are still
statements in the literature (see, for instance, Refs. 6, 7, and 8) to the
effect that

= C = const. (25)

is an empirical law. Granted that equations (22) to (24) were derived only
for the power law, while equation (23) has been observed to be approxi-
mately true even in cases when the power law did not hold. As both
the creep rate and the critical time are usually plotted along the axis of
abscissas according to a logarithmic scale while the corresponding stress
is measured along the axis of ordinates either according to a Cartesian or
to a logarithmic scale, equation (25) implies that the strain rate and
critical time curves are symmetric with respect to a vertical straight line
whose abscissa is (I) log C. This follows immediately from equation (25)
if logarithms are taken:

log ter + log = log C (26)

When the power law of creep and equation (24) hold, the two curves are
straight lines.

It is of some interest to prove that the only steady creep law that can
lead to equation (25), if the physical assumptions made in the derivations
of this section are maintained and if infinity is taken as the upper limit
of the integral, is indeed the power law. Equation (18) can be re-written
as

d(log (r) ( do-
(27)

This is the critical time corresponding to the nominal stress a 0 . At the
same stress the strain rate is = f(o). The constancy of the product
is expressed, therefore, by

.ffiTo) of(a) const. (28)

This can also be written as

( do- K

(rf(a) .1.((ro)

A variation of the lower limit of the definite integral yields

da0 

ao.f(ao) [.f("o )]

2
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where the prime denotes differentiation with respect to ao. This becomes
after shortening and rearranging

y' K.x)y  0 (31)

If the following notation is used:

Y — .1.(a0) f(x) (32)

In equation (31) the variables are separable:

1 dr

K x
(33)

The integral is
v  u: Cx1 /K (34)

which is the power law.
2.  Exponential law. When the creep strain rate is governed by the ex-

ponential law
ke"ls = f(a)  (35)

where k and s are constants to be determined from experiment, substi-
tution in equation (27) gives

e '" do 1 r d(a/s)

I ko• k al
00/s

The indefinite integral can be evaluated by integrations by parts:

e 11v- dy e 11 v v _ y3  r 4

The series in brackets is an asymptotic series. If it is broken off after
the nth term, the maximum possible error committed is the value of the
(n +  1)th term(9). The approximate value of the critical time is then

ter  exp (  a„.$)(s a0k)[1. - (s 0-0) 2(s. a0)2 - 6(s a0)3 ...]  (38)

A more accurate value is

ter  exp ( — a„ .$)(.sIa0k)[1  (s/  ao) 2(s/  a0) 2 — 6(s/  a0)3 . . . ]

— exp (—  au/s)(s/a,,k)[1 (s/a„)  + 2(s/au)2 — 6(s/a03 -4-

(39)

where au is the ultimate tensile stress of the material at the test
temperature.

As the value of aols is likely to range between 2 and 20 in aeronautical
applications, and au/s is usually larger than ac,/s by a factor of 2 to 10,
a good approximation can often be had by writing

ter  (1/k) exp (—  0-01s)(s/0-0)= s/a,/, (40)

The percentage error committed when this formula is used should not be
much greater than 100 (s,'0-0).

ter 
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A slightly more accurate expression is

	

1 1 1
ter = S  (41)

When avls  is comparatively small, say, smaller than 3, the above
approach may be too inaccurate or too inconvenient. One can then make
use of tables of the exponential integral defined as

	

— Ei(— x) =  lly -1 dy  (42)

This function is tabulated, for instance, on p. 6 of Ref. 10. Substitution
in equation (36) gives

ter — (1 /k)[Ei( — (To is)] (43)

With the more accurate upper limit one has

ter = (1/k)[Ei( cro./s) — Ei( —  crs)]  (44)

3. Primary creep law. When the results of constant-stress creep tests
can be represented by the primary creep law

E g(a)  (45)

assumption of the existence of a mechanical equation of state yields the
following expression which is valid for variable stresses also(3':

(11m)[;(0-)]m€1-m (46)
If this law is generalized further to hold for large deformations through
substitution of log R for E and aoR for a ,  the result is

(d/dt) log R = (11 R)(dR1 dt) == (11m)[g(a0R)]° (log R )' m  (47)
If it is now assumed that the function

g(u) = (a / (48)
and the variables are separated in equation (47), one obtains

dt =  m(A/ao) "(11R)mn  dR (49)
The substitution

R z ex (50)
changes this equation over into

dt m(Aluo)'""e- (1(1 XfllI dx (51)
The critical time is then

I, 11)

ter — m(A10-„) III"  xm -1 Ill IIX dx (52)

When p is a positive integer, the indefinite integral

.1CP AV" p(p - 1):0
Pe dx — e

_  a
+ 	

• a- a3

If this expression is used in the evaluation of the
lower limit only the last term in brackets remains. Moreover, the upper

a • I

!

n
12 I)

(53)

critical time, in the
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limit vanishes completely if, in an approximate manner, the upper limit
is replaced by infinity. Under these conditions equation (52) becomes

ter [in ! j(mn)1( A,' (T )M U (54)

where the exclamation mark indicates the factorial function. For
particular values of m this expression reduces to

ter  (1  /n)( A/ao)n when m -  1 (55a)

ter  (1,  2)(1),)2(  A/Gro) n when m  2 (55b)

ter  (2, 9)(1:n)3( A:0-0)3n when m =  3 (55c)

er (3 .32)(1,'n)4(  A0-0)1n when m --= 4 (55d)


When m is not an integer, the substitution
s  (56)

transforms equation (52) into
mn log

ter = [ni ,(mn)1(A,ra„)"'" e s m ds  (57)

When the upper limit is taken in an approximate manner as infinity,
the equation reduces to

ter [ni/(nin)1( A 1(r„)"' " P(m)  (58)

where F(m) is the gamma function tabulated, for instance, in Ref. 10.
With the exact upper limit one has

ter [in/(mn)11()l uOmn {r(m) P[m, inn log (au/aa (59)

where 11»t, inn log (gul go)] - e- sm ds  (60)
n

is the incomplete gamma function.

3 . CREEP BUCKLING

A. The Buckling Process

Just as a bar subjected to tension fails after a finite time when its
material creeps, so does a column in the presence of creep when it is
under the action of a compressive load P, however small. This mode of
failure of the column is known as creep buckling. Even though creep
buckling was first described in the technical literature only a dozen years
ago, a number of different processes have already been proposed to explain
the phenomenon. They were reviewed in detail by the author in a recent
publication" which contains a reasonably complete bibliography of the
su bject. For this reason references to the history of creep buckling theory
are not given here; the purpose of this article is to present one particular
approach to the analysis of creep buckling which, in the author's opinion,
is in the best agreement with observations made in creep-buckling tests
carried out with metal columns at high temperatures. This approach was
developed jointly by B. Fraeijs de Veubeke112) and the author.
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It is self-evident that every column is imperfect; because of the in-
accuracies of the manufacturing process and of the alignment in the
testing machine, its centerline deviates from the straight line along which
the compressive load is acting. The product of force and deviation is a
bending moment under the action of which the initial curvature of the
column increases with time in consequence of creep. The increases in
curvature take place very slowly at the outset if the column is carefully
machined and centered and if the applied load is substantially smaller
than the Euler load. After a while the velocity of lateral deflection in-
creases and the column collapses quite suddenly when a critical value of
the lateral deflection is reached.

B. Flexural Rigidity of Deflected Column

The reason for sudden buckling at the critical deflection can be under-
stood if the variations in the flexural rigidity of the column with increasing
deflection are investigated. To simplify the analysis, let us assume that the
cross-section of the column consists of two concentrated flanges, each of
an area A/2, which are held a distance h apart by a web which has no
resistance to normal stresses but is perfectly rigid in shear. This approxi-
mation to reality has been shown to be an excellent one in the case of
I-sections and for many purposes it is satisfactory even with solid
rectangular sections.

' 2 60

Fic. 6. Stress—strain diagram of material.

The stress-strain curve of the material is shown in Fig. 6; it should
represent the behavior of the material at the moment of collapse which
may differ considerably from the behavior at the beginning of the creep
buckling test. The change in material properties is due largely to the
exposure to the high temperature ; the effect of the creep deformation is
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usually negligible since in aeronautical applications the maximum strain
just before collapse is generally of the order of the Euler strain

CE =  2/(L/p)2 (61)
where  L  is the length of the pin-ended column and p is the radius of
gyration of the cross-section. If the slenderness ratio  LI p  is 50, the Euler
strain is about 0.4%. The effect of such a small creep strain on the
instantaneous response of the material to loading can safely be disregarded.

At the moment of load application the stress in the two flanges is the
same for all practical purposes if the initial deviations from straightness
are very small. It is

PIA (62)

As the deviations increase in consequence of creep, the stress a, in the
concave flange increases and the stress a, in the convex flange decreases.
After a while the values of  al  and a, may be as indicated in Fig. 6; the
increase in  a,  must be equal in absolute value to the decrease in a, because
the load  P  is constant.

If we wish to test the flexural rigidity of the column, we can increase
by an infinitesimal amount the amplitude of the lateral deflections and
calculate the corresponding change in the bending moment. The increase
in curvature is

	

(de, -- J€2)/h = AK (63)
where the strain is positive if it is compressive. The increment in the
compressive stress on the concave side of the column is

zla, = Etzlel (64)

where the tangent modulus  Et  is the slope of the tangent to the stress strain

curve at point C. The change in the stress in the flange on the convex side is

EL1E2 (65)
which is a negative quantity as d e, is negative indicating a diminishing
of the compressive strain. In this equation  E  is Young's modulus; it
must be used when the stress decreases because only the elastic part of
the deformations can be regained. For reasons of equilibrium

(Li al ± a2)(21 /2) = LIP = 0 (66)


The increase in bending moment is therefore

d = da1(Al2)h = —Ja2(412)h (67)
By definition, the effective bending rigidity  (EI),,,,  is the increment in
bending moment divided by the increment in curvature :

da,
(EI)eff = 	

(Al2)h
(68)

— zle2)111
Substitutions yield

(Enefe EefrI E + Et 4
where  I  is the moment of inertia of the idealized I-section.

2EE1 Ah  2
(69)
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If the initial value 0-0 of the stress at the moment of load application
is less than the elastic limit of the material, the initial bending rigidity
of the column is

(El), =  E(.-Ih2/4) (70)

Equation (69) reduces to this value if  E  is substituted for E. If the
initial value a, of the stress exceeds the elastic limit, Et in equation (69)
has to be determined from the slope of the tangent corresponding to uo.
The effective bending rigidity so obtained was proposed for use in
buckling calculations by von Kármán in 1910").

As the column deflects further and furthcr under the influence of
creep, its instantaneous bending rigidity also decreases since Et. in equation
(69) decreases. If this value were the same along the entire column, the
buckling load would be

Pc , = 772(EI ) 'e r,L2 (71)

where  L  is the length of the column. Correspondingly the critical value
of the average stress would be

6 0.er =  Pcr/A =72 Eeff/(LA2 =  EEEef f (72)

where EE is the Euler strain defined in equation (61) and p is the radius of
gyration of the section:

p = h/2 (73)

Since thc value of  Et  is least at the middle of the column where the
curvature, and consequently the stress, is highest, equation (71) is a
conservative estimate of the buckling load.

The interesting situation arises, therefore, that the critical value of
the average stress  cf,sr  decreases as the amplitude of the lateral de-
flections increases while the average stress  go PIA  remains constant.
When the critical value of thc deflection is reached, o-oyr=o-o, and the
column suddenly buckles.

C. Calculation of the Critical Deflection

The critical value of the lateral deflection amplitude depends only on
the stress-strain curve, the slenderness ratio of the column, the value
of the applied load  P  (or applied stress cy„  P/A)  and the deflected
shape of the column, but it is independent of the creep characteristics
of the material. It will now be calculated on the assumption that both the
initial shape of deviations and the deflected shape can be approximated
by a half sine wave. This was proved to be permissible under most con-
ditions of interest in aircraft structural applications. Moreover, the
conditions of equilibrium and deformation will be enforced only at thc
middle of the column. A more general analysis, making use of Fourier
series, is possible but much more complicated. In all those cases in which
comparisons are available, the so-called one-point collocation method and
the more rigorous analysis yield results that differ relatively little").
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If the deflection of the midpoint of the column is ap where  a  is the
non-dimensional deflection amplitude, the stress in the concave flange is

P M P Pa p
	 == (A/2)h A A(h/2) 0-„(1 + a)  (74)

al A 


IIence for a given value of the applied stress  a,  the critical value of the
non-dimensional deflection amplitude is

art. - (ai/a0) - 1 (75)

At the same time one must also satisfy the buckling condition

(To=€1,]Eere

where E1,1fis a uniquely-defined function of al.
If the stress-strain curve is known, the following procedure is con-

venient for the establishment of the relationship between applied stress
ao and critical non-dimensional deflection amplitude au:

Assume a value ofa,.
Determine the corresponding Et from the stress-strain curve.
Calculate E'er, from equation (69).
Establish the relationship between a, and kn. for the entire range
of stress of interest.
From the known geometry of the column compute EE from
eqdation (61).
Substitute E E and a selected value of kf, in equation (76) to obtain
the average stress ao.
Substitute this value of ao and the value of a, corresponding to the
selected value of Eef f in equation (75) to obtain arr.

Plot these values of acr against the a, values of (7); the curve is
the relationship required for the prescribed geometry and material
properties.

D. Use of the Ramberg - Osgood Relationship

At room temperature the stress-strain curve of the material can usually
be approximated by the following expression("):

(77)

It will now be assumed that this is an accurate enough approximation at
high temperatures also. The tangent modulus value is then

= da/dc r= 1/(de/da) - [(1/E) + (p//3)(0-1//3)e-1 ' (78)

The subscript 1 under the a indicates that Et has to be calculated for the
value of the compressive stress prevailing in the concave flange. From
equation (69) the effective modulus is

Eef f = E[1 + (p12)(EIB)(a11B)P-1]-1 (79)

(76)
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From equation (76) one obtains

ao = u;[l -7. (r2(E,13)(a1/B)"-1] ( 80)

With the aid of this expression equation (75) yields

aer = (1/0-0[0-, ±  (p/2)E( 01 /B)P] —1 (81)

But equation (75) can also he solved for 0-0to give

(To == (71/(1 aer) (82)

When the geometry of the column and the stress-strain curve of the
material are given,  E, p, B,  and 0 E are known. Substitution of a selected
value of 01 in equation (81) yields the value of  acr.  Substitution of this
value in equation (82) gives the corresponding value of  u„.

E. Calculation of the Critical Time
When the critical value of the non-dimensional deflection amplitude as

well as its initial value is known, the critical time can be obtained without
difficulty provided that sufficient information is available on the creep
behavior of the material. Let  a,  denote the initial non-dimensional
amplitude of the deviations from straightness before load application;
it was shown in Ref. 11 that a half sine wave represents the distribution
of the deviations along the axis with sufficient accuracy for the present
purposes. The application of the load  P  causes an instantaneous elastic
increment in this amplitude; the increased value  ao  can be computed
from the formula

a, = a0„1[1 — (PIPE)] (83)

where PE is the Euler load of the column. When the stress exceeds the
elastic limit of the material, an additional instantaneous plastic deforma-
tion also takes place. The magnitude of this deformation was calculated
in Refs. 16 and 17.

The creep process begins immediately upon load application. As was
shown, for instance, in Ref. 18, the rate of change of  a  is given by

(1/2 EE)(i — 2) (84)

Consequently the critical time is
ar

ter 2€ E dar.(1 —

When the creep law is
=

equation (85) becomes





Jter —
(1 ± a)" — (1 —

ao

aer
2E E da
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FIG. 7. Stress—strain curve for 2024—T4 Al. alloy at 500°F

(from Ref. 17).

F. Numerical Example

The theory will now be illustrated with a numerical example in which
the critical time of a column will be calculated. The stress-strain curve
of instantaneous loading is given in Fig. 7; it was taken from Ref. 17.
It represents the behavior of 2024-T4 aluminum alloy at 500°F. In
accordance with the Ramberg-Osgood approachu5), the curve will be
approximated by the formula

E = (0-'E) 57,800)2° (88)

As the experiments described in Ref. 17 were made with columns of
a slenderness ratio of 52.7, this value will be taken here also. With a
cross-sectional area of

A = in.2 (89)

and a modulus value determined from Fig. 7 as

	

E -= 8.55 10 psi (90)

the following quantities can be computed:

EE -- 0.00356 E = 30,400psi PE = 3800lb (91)

With the aid of these values the connection between applied load  P
and critical non-dimensional deflection amplitude au can be calculated
from equations (81) and (82). The results are plotted in Fig. 8; they agree
very well with those obtained in Ref. 17 with the aid of a graphical-
numerical procedure.

It is of interest to note that au is less than 2, that is, buckling takes
place before the maximum lateral deflection reaches a value equal to the
depth  h  of the idealized section, if the load exceeds 43.5% of the in-
stantaneous buckling load. Such a high percentage is common in aircraft
and missile structural testing while in stationary powerplant tests the
percentage is usually lower.
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Flo. 8. Critical non-dimensional deflection as function of applied load.

Next the creep behavior of the material was investigated. It was not
found possible to represent with a satisfactory degree of accuracy the
creep curves published by a power-function type steady creep law.
Nevertheless the formula

(a/248,000)4 (92)

was adopted for the analysis as it permits the development of closed-form
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solutions. After the substitution of n - 4 in equation (87) the integration
was carried out with the result that

( itio) 2
log  (93)

8 i„ 1 - (1 (4.02

This equation was used first to evaluate the effect of changes in the
initial deviations. Values of a00were assumed and substituted in equation
(83) to obtain ao; these in turn were substituted in equation (93) to
obtain t,.r. The load was assumed as 1600 lb. The results are plotted in
the dotted curve of Fig. 9.

Finally the effect of changes in the applied load P was investigated.
For each value of the load the corresponding values of and acr were
substituted in equation (93) with a, taken as 0.1. The results are shown
in Fig. 9 by the full line.

A few remarks of interest can be made in connection with Fig. 9.
First the overwhelming effect of the load on the critical time is evident.
A change by a factor of about 3.5 in lifetime was achieved through a
change in load tw a factor of 1-33. In comparison, for a change in life-
time by a factor of about 2.8 a change in initial deviation amplitude by a
factor of 6.66 is required.

The circles in the diagram are the experimental points corresponding
to the full line. At P  1500 lb the agreement between theory and
experiment is good, but at higher loads the experimental lifetime is only
about half the theoretical value. It may be mentioned that this is not
considered a bad disagreement in creep investigations where the scatter
of the results is always great. But of course in the present analysis great
accuracy could not be expected because the empirical formula of
equation (92) fits the test data poorly. It should also be noticed that the
percentage deviation is much smaller if it is based on allowable load
values for a prescribed lifetime. For instance, a lifetime of 120 hr can
be achieved if the load is 1825 lb according to the curve, or 1625 lb
according to the experimental points.

4. HEAT SINKS AND ABLATION

A.  Baclwound Information

The most radical departure from classical design methods can be
observed with re-entry vehicles. They include the ballistic missile whose
nose cone has already been successfully recovered on a few occasions;
shuttle vehicles to satellites; and space ships designed to descend on
the Earth or on some other planet, which, of course, have vet to be built.
The main problem with these new types of craft is how to take care of
the very large amount of heat flowing into the structure from the boundary
layer of air during the decelerating phase of the flight. A number of
proposals have been made by designers to overcome this difficulty.

A.S. (vol.. 2)-25
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Perhaps the simplest method already tried is the incorporation of a
sufficient amount of heat capacity in the structural elements of the
vehicle to absorb the heat without an undue deterioration of the material..
Such a structure acts as a heat sink. The material may retain enough
strength, in spite of the high temperature reached, to withstand the
pressure and inertia loads imposed upon it. Alternatively, it may be backed
up by a cooler and stronger material which is called upon to maintain
the structural integrity of the vehicle.

One step further removed from airplane design practice is the structure
that is covered with a layer of material destined to be used up during
flight. The removal or ablation of this layer can be initiated by melt-
ing, vaporization, sublimation, or burning. The contribution of the
ablation process to the protection of the structure below the expendable
material is threefold; the laver absorbs heat as its temperature is raised;
it absorbs heat during phase changes; and it modifies the flow in
the boundary layer in a manner that decreases the heat input in the
structure.

Exact analyses of these processes are difficult because of their inherent
nonlinearity and because of the many variables involved. A great deal
of effort is now being spent in the United States to clarify the basic
physical facts and to develop numerical methods for analyzing individual
designs. The most important quantity to be calculated is the lifetime
of the structurc.

A few comparatively simple considerations relative to these processes
are presented in the next few articles.

B. Heat Sink

When the surface of a missile re-entering the atmosphere -is subjected
to very rapid heating for a xery short time, the structure can absorb the
heat if its material has a high thermal capacity and a high conductivity.
The latter is just as important as the former because, in a poor conductor,
the heat must be absorbed in a very thin layer of the material near the
heated surface and the rest of the thickness cannot contribute to the
storage of heat.

The relative merits of different materials can be easily established in
a first approximation if a number of rather far-reaching simplifying
assumptions are made. The heat flow into the structure will be assumcd
constant during the heating period; similarly constant average values will
be introduced in the beat flow equation for conductivity, specific heat
and specific weight. One-dimensional heat flow alone will be taken into
account; this means that the wall will be considered a flat slab of large
dimensions subjected to uniform heating over one surface. It will also
be assumed that the conditions at the inner surface of the wall have no
noticeable effect on the temperature distribution; this is equivalent to
saving that the wall is infinitely thick.
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This highly-simplified problem can be characterized mathematically in
the following manner:

a(b2o1 ax2) x > O t >  0 (94a)

0= 0  t=O  x>0 (94b)

x 0 t > 0 (94c)
In these equations

0 K(iTC.v) (95)

is the heat flux, its prescribed constant value at the boundary (the
heating rate), K the thermal conductivity, x the distance measured from,
and perpendicular to, the heated surface, t the time counted from the
beginning of the heating, and a the thermal diffusivity defined by the
equation

a K cp (96)

with c the specific heat and p the density. If the uniform initial tempera-
ture is T„, integration of this boundary value problem yields

7' 7'„ (2 ( 1K)(at )  ierfc kj2v((at)] (97)

where ierfc denotes the iterated complementary error function de-
fined in Ref. 19. Since

ierfc (0) 1 \ (98)

the surface temperature can be given as

(1' 0 (2 ( 7K)(atIOL2 (99)

The equation shows that the surface temperature increases as the square
root of time when the heat flux into the structure is constant.

The suitability of a material to act as a heat sink will now be judged
on the basis of the time t„, necessary to melt the surface. Equation (99)
can be solved for t„, after substitution of T,„ of Tx_0 and t,„ for t.

One obtains
tin - (7/4a)(KIC)2(7'n, -- T0)2 (100)

If T, is taken as 400"R, C as 1000BTU/ft2 sec, and the values of a, K,
and T, are substituted into the formula from Table I, one obtains the
melting time values listed in the next to the last row of the table.

It is to be noted that graphite does not melt, but sublimes. tience in
the case of graphite T„, is the sublimation temperature.

The table shows that a heating time of 6 sec can be withstood by
copper, beryllium, and graphite, but not by Inconel-X in spite of its high
melting temperature. The trouble lies, of course, in the low conductivity
and the low heat caPacity of this material. The slow penetration of heat
into the Inconel-X slab as compared to the other slabs can be seen if one
calculates the distance xr, at which the temperature is one-quarter of
the melting temperature.
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TABLE

Melting time t„, for constant heat flux C = 1000 BTU/ft2 sec

Copper Beryllium Inconel-X Graphite

0-105 0-66 0•13 0.5
205 65 11 25

2442 2805 3030 7060
0•322 0.067 0.307 0.081
8.42 2.04 0•38 0.86

10.9 6•26 1.15 16.9
1.58 0•59 0.11 0.63

c, BTUPW'R
K,  BraiIhr ft R
Tm,
p, 1b/in"

a, in2/min
SCC

xt in.

For any given material and at any given time the temperature distri-
bution through the slab depends on the function ierfc[x/2-\/(at)]. The
value of this function (19) is 1/ -Or when the argument is zero, and one-
quarter of this value, that is 0.141, when the argument is 0.64.

Consequently

	

x1/4/2A/(atm) = 0.64 (101)

from which the distance follows as

	

— 1.28 \ /(atm) (102)

Values of x111 computed from equation (102) are entered in the last row
of Table I. They show that the penetration depth for Inconel-X is only
0.11 in. It can also be seen from the table that a one-inch thick slab can
be considered as an infinitely thick one for most practical purposes, up to
the time when the heated surface begins to melt, if the material is beryllium
or graphite. With copper this is not quite true, but the slab can be con-
sidered infinitely thick in a rough approximation up to 6 sec of heating.
Indeed at that time the maximum temperature is 1913°R and x114is
1.175 in.

If the heating period lasts 6 sec only, the structure can be built of
copper, beryllium or graphite. The former two must be close to one
inch thick ; hence beryllium is preferable because it weighs only about
one-fifth as much as copper. Graphite would be even better although its
density is about 20% higher than that of beryllium. On the other hand,
a graphite structural element could be made considerably thinner than
one inch if the heating lasted only 6 sec.

A much more accurate analysis of the behavior of a heat sink was
carried out recently by Stalder(20). The heating rate was assumed in
accordance with the flight path of a nose cone characterized by
II7C DA = 345 re-entering the atmosphere at a speed of 23,000 ft/sec.
Here IV is the weight, CD the drag coefficient, and A the frontal area
of the nose cone. The variation of the external heat transfer coefficient
h and of the recovery temperature T. is shown in Fig. 10.
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FIG. 10. Heating characteristics of re-entry body.

(from Ref. 20)

As the thermal properties of the structural materials vary significantly
between ambient temperature and the melting temperature, the variation
was duly considered in the calculation. As an example for this variation
the values of  K  and  c  are plotted in Fig. 11 as functions of the tempera-
ture. Finally, the assumption of an infinite thickness was abandoned
and the actual thickness  b  was included in the analysis; at x = b  the
wall was assumed to be insulated.

The resulting mathematical statement of the problem is:

pc(ETet) = (0x)[K(Trex)] (103a)

x == b am, tyax — 0 t > 0 (103b)
— 0 K[. T(0 , x] - - t)] EuTi(O, t) (103c)

T 400R 0 < x < b t = 0 (103d)
Here E, the emissivity, was taken as 0-7 and 0-is Boltzmann's radiation
constant.

P,ecovery

temperature,

1,
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FIG. 11. Variation of conductivity and specific heat of graphite with time.


(from Ref. 20)

Numerical integration of the differential equation showed a yerv large
influence of the variability of the thermal properties of the material on
the temperatures in the wall in the case of graphite, and considerably less
of an effect in the case of copper. With graphite the maximum tempera-
ture reached in the heating process was found to be 3460°Rwhen average
values were used, as compared with 2200°R obtained when the variability
was taken into account.

Some of the results of the calculations are shown in Fig. 12. They are
the temperatures of the heated surface and of the insulated surface when
the two are one inch apart, as well as the total heat 0 transferred through
one square foot of the surface, with the three quantities plotted against
time. The material of construction is graphite.

An interesting conclusion was drawn by Stalder from the results of
his numerical integrations. He found that the external heating history
prescribed caused a maximum wall temperature just equal to the melting
or sublimation temperature, if the wall thickness was about 1, 1'1, and
2 in. for graphite, beryllium, and copper, respectively. The total heat
absorbed by one pound of each material was 1980, 534, and 84 BTU.
Hence theoretically the graphite wall could be built to weigh about one-
twenty-fourth, and the beryllium wall one-sixth as much as the copper wall.

Of course, considerations other than those of thermal efficiency must
be taken into account before the suitability of a material to serve as a heat
sink is decided. For instance, graphite has a low strength and it oxydizes
easily at high temperatures while beryllium has poor ductility.
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FIG. 12. Temperature history of graphite wall.

(from Ref. 20)

According to Refs. 21 and 22, however, the ductility of beryllium
suffices for industrial use, particularly when the operating temperature
is in the range from 500T to 1500T. The mechanical properties are
excellent; at 120011 the modulus of elasticity is 26 x 108 psi and the
ultimate tensile strength about 21,000 psi. Thermal stresses in beryllium
structural elements are often less dangerous than in other materials.
This is due mostly to the low coefficient of thermal expansion of the
material. Measured values are 64 x 10 6 per °F at 70"T and 124 x 10-6
per (1.4. at 12001'. The product of the expansion coefficient and Young's
modulus is 282 lb in. F -1 at 70T and 322 lb in.  2  at 120011.

C. Melting
When the heating rate is so high that heat conduction cannot prevent

the surface of the structure from reaching the melting temperature, the
heat sink approach to the design of a re-entry vehicle becomes impossible.
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There is no fundamental reason, however, why the designer should not
permit the surface to melt if this process takes place slowly enough and
in an orderly manner. The material of the vehicle, is of course, used up
in this process but it is utilized more fully than in the heat sink. The
maximum heat absorbed by the material is  c(T„, — TO per unit mass
in the heat sink as compared to c(Tm —  T() L,  where  L  is the latent
heat of fusion, which is the minimum heat absorbed when melting is
permitted.

For instance, in the case of beryllium the latent heat of melting is
about 500 BTC,1b. If the data of Table 1 are used and the initial
temperature is taken as 4001t, the heat absorption before melting is
1590 BTU/lb ; as melting absorbs 500 BTU/lb, the gain is 31-5`',',. More-
over the molten metal is still capable of absorbing heat before it is carried
away by the air flow. The latent heat of melting copper is 91 BTU/lb.
Under the conditions mentioned its heat absorption before melting is
215 I3TU/lb ; hence the gain is 42%. As was stated earlier, graphite does
not melt but sublimes. Its latent heat of sublimation is 10,800 BTU/lb.
Its heat absorption before sublimation being 3330 BTU/lb, the gain
is 324(!.(0.

The exact calculation of the melting process, of the removal of the
molten material by the air flow, and of the details of the heat transfer
through the boundary lay er of air, the liquid and the solid is a complex
problem. However, an appraisal of the order of magnitude of the quantities
involved can be had without much difficulty. For this purpose one may
assume that the heating rate  H  is constant; that the wall of the structural
element is so thick that the conditions at the inside surface do not in-
fluence the process; that the molten metal is instantaneously and fully
removed by the air flow; and that a steadv-state solution of the problem
exists in the sense that, after a transient phase, the rate of melting and
the temperature distribution through the wall remain constant (if the
distance is measured in a moving system of coordinates from the instan-
taneous location of the heated surface).

Under these conditions the heat  H  flowing through the wall per unit
area per unit time must be equal to the heat transferred to the material
that is removed during the same time. The weight of this material is Vp
per unit area and unit time if p is the density and  V  the velocity of
ablation. This material is brought from the initial temperature  T,  to the
melting temperature Tm; in addition, it absorbs the latent heat of
fusion L. The principle of the conservation of energy requires that

H = Up[c(Tm — 7')) L]  (104)

from which the ablation rate is

	

(1I/ p),[e(Tin -- L]  (105)

Here c is the specific heat of the material.
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Assumption of a heating rate H = 1000 BTU ft2sec and use of the
values given earlier result in ablation rates of 4.2, 2.97, and 0.364 in/min
for copper, beryllium, and graphite, respectively.

This solution disregards the transient aspects of the melting problem.
They were properly considered by Landau1231who set up the problem
in the following mathematical form:

c p('T ret) = (/Lv)[K('T/ x)] s(t)<x <b t >0 (106a)

T(x, 0) = To(x) T „, 0 > b t O (106b)

T Lx) = 0 x b t 0 (106c)

H(t) - K( 7' , Lv) / dt) x s(t) t 0 (106d)

In these equations, t is time, K the thermal conductivity, L the latent
heat of melting, s the location of the free heated surface, and h the
thickness of the wall.

When these equations are applied to the semi-infinite wall (h
under steadv-state conditions, equation (105) results as the solution.
More generally, the solution in the case of the semi-infinite wall depends
on the parameter

m - (v/7 712)(c / L)(T rn To) (107)

Closed-form solutions were presented for the limiting cases of m = 0
and m = Tx:,  and for other values of m the differential equation was
integrated with the aid of relay calculators. Some of the results obtained
are shown in Fig. 13.

o 4 6 1.0 1.2 14 1.6 1.8 2.0

Y'

FIG. 13. Rate of melting ds as fraction of the steady-state rate V
(from Ref. 23)

The ordinate of the diagram is the ratio of the melting rate obtained to
the steadv-state melting rate I" as given in equation (105). The abscissa
is a nondimensional time quantity (t - 1, where t „, is the melting
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time, that is the time necessary for the wall x = 0 to reach the melting
temperature:

tin = (7r14)(Kcp1H2)(Tm — T0)2 = [p(LIH)m ]2 a (108)

Here a is the thermal diffusivity of the material:

a = K/Cp (109)

The figure shows that the velocity of ablation monotonically increases
with time and asymptotically approaches the value F. At a time equal to
twice the melting time, the velocity of ablation is about 0.9 I if in is greater
than 5.

In a recent paper(24), Sutton developed a theory in which the assumption
that the molten material vanishes instantaneously is not made. On the
contrary, the flow of the melt is calculated from the laws of fluid dynamics.
Since the Reynolds number based on a typical dimension is large, the
equations are those of the incompressible boundary laver. For a two-
dimensional flow thev are given by Sutton as:
Continuity:

(ti/E3x) (iiv/0,) (1 (110a)
Momentum:

	

pu(i u pv(i'u y) (q) u y)] (1106)

— 0 (110c)
Energy:

pe[u(07i-,x) -; u(q)/x) (0y)[1:(.T4y)] Wulijy)2

(110d)

The origin of coordinates is at the (moving) interface between the air
flow and the molten material, x and y denote the directions parallel and
perpendicular to the surface,  u  and v are the velocities of the fluid in the
x and y directions, c is the specific heat at constant pressure, and  p  is the
pressure. The boundary conditions at the interface (y 0) are given
in the form

	

1-"(0) iflj p [iu(0)-y] rj it; T(0) - (111)

Here Ti is the temperature of air and melt at the interface, mi the mass
transfer rate of the molten material across the interface in consequence
of evaporation or burning and ri the shear stress between the molten
material and the air. If the material exhibits a definite melting point, at
a distance y y,  the conditions are:

T(6) T„, u(8) (112)

If this is not the case, the boundary conditions of equations (19) are
replaced by

liiii u(y) lirn T(y) (113)
-
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A suitable transformation reduced the partial differential equations to
ordinary ones, which in turn were integrated with the aid of a REAC
differential analyzer. In the numerical work average values were assumed
for density, specific heat, and conductivity, but the variation of the vis-
cosity with the temperature was duly taken into account. The material
was taken as Pyrex glass and the density of the air over the surface was
assumed as that prevailing at the stagnation point of a blunt body at a
Mach number of 18 at an altitude of 90,000 ft.

Six interface temperatures ranging between 3000F and 4000°F were
considered as well as three values of the shear stress and two values of V
at the interface (this defines mi).  It was found that Tj and /it; had little
effect on the interface temperature and the melting rate. These two
quantities, however, increased approximately linearly with the rate of
heat transfer through the interface. It was also observed that the tempera-
ture at the surface characterized by  u 0 (boundary between liquid and
solid) was about 62% of the interface temperature, and that the heat flow
into the solid region was about 70% of the heat flow through the inter-
face, if by this term the boundary between the air and the molten material
is understood as before. The thickness of the molten glass for the flight
condition mentioned earlier was calculated as 0-071 in. and the maximum
tangential velocity  u  of the melt as 0.02% of the tangential velocity of the
air stream outside the boundary layer.

D. Burning

When the heating rate becomes very high, the surface of the structure
is likely to burn. The chemical reaction between the molecular or atomic
oxygen and the atoms or molecules of the material of the structure is,
however, not the only one to occur in the process. The various chemical
species are transported from the surface of the structure into the boundary
laver where they can undergo further changes through dissociation and
recombination. For this reason the study of the effect of burning on the
flow in the boundary layer and on the heat transfer from the boundary
layer to the wall is far too complex to be treated here; an excellent
summary of our present knowledge of the processes involved was recently
given by Lees121 at an AGARD panel meeting in Palermo.

In spite of the complexity of the problem, the case of laminar boundary
layer flow has already been treated extensively. The equations governing
the process become comparatively simple when the rate of heat energy
transferred through diffusion is equal to that transferred through con-
duction. When this is true, the Lewis—Semenoy number Le is equal
to unity:

Le = pD,;„/K 1 (114)

and the differential equation governing the rate of energy transport

across streamlines has the same form as the ordinary heat conduction
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equation for a non-reacting pure gas. In equation (114) 2, is the average
specific heat at constant pressure of the gas mixture and  D„  is the co-
efficient of mass diffusion of species 1 into species 2. To take care of
more complex problems, approximate correction factors have been derived
for cases when the value of  Le  differs from unity.

The conditions prevailing in a turbulent boundary layer are still largely
unexplored. Fortunately a number of relatively simple formulas for the
heat-transfer coefficient, derived on the basis of Reynolds' hypothesis of
similarity between the turbulent transport of mass, momentum and
energy, agree satisfactorily with experimental results.

Of considerable importance to the designer is the observation that
burning is not necessarily fatal, or even disadvantageous, to the structure.
When the heat of sublimation of the surface material is comparable to
the heat released by combustion, the thickening of the boundary laver
as well as other processes such as the dissociation of the sublimating
material, may actually reduce the heat transfer to the structure below
that observed without burning.
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DISCUSSION

II. P. VAN LEFUWEN*: This comment, which is a written one, differs from the

one given verbally because in the Discussion it did not become fully clear what

the comment implied.

The essence is that it is questioned whether Prof. Hoff consistently used the

concept of natural strain in his calculations given in pages 735-939.

* National Aeronautical Research Institute, Amsterdam, I lolland.
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It should be noted that he did, in fact, introduce this concept in equation (10)
on p. 5, which may be read as

— [log(1 ± c)] = En = f(cr)
dt

(10)

He, however, abandons it on p. 6 when he writes:

• d log (I d log  a
tr =

f(a)

and thus assumes j(a) which if course is not in accoruance with equation t1 0)
as given previously.

N. J. 110FF : The author is willing to admit that the second part of equation (18)
may be misleading; it would have been preferable to write instead of On
the other hand, this equation was used only in the graphical construction in
connection with creep rate data presented in graphs. As the steady creep rates
plotted in these graphs were obtained largely from test points corresponding to
strains not exceeding a few per cent, the distinction between engineering strain
and natural strain is unnecessary. Hence the graphic integration indicated in
Fig. 1 is permissible.

In the analytical work the critical time was calculated from equations (15) and
(27) and from the first part of equation (18) in which the distinction between
natural strain and engineering strain is not subject to any doubt.




